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In this paper, we study the nonasymptotic and asymptotic performances
of the optimal robust policy and value function of robust Markov Decision
Processes (MDPs), where the optimal robust policy and value function are
estimated from a generative model. While prior work focusing on nonasymp-
totic performances of robust MDPs is restricted in the setting of the KL un-
certainty set and (s, a)-rectangular assumption, we improve their results and
also consider other uncertainty sets, including the L1 and χ2 balls. Our results
show that when we assume (s, a)-rectangular on uncertainty sets, the sample

complexity is about Õ(
|S|2|A|

ε2ρ2(1−γ )4 ). In addition, we extend our results from

the (s, a)-rectangular assumption to the s-rectangular assumption. In this sce-
nario, the sample complexity varies with the choice of uncertainty sets and is
generally larger than the case under the (s, a)-rectangular assumption. More-
over, we also show that the optimal robust value function is asymptotically
normal with a typical rate

√
n under the (s, a) and s-rectangular assumptions

from both theoretical and empirical perspectives.

1. Introduction. Reinforcement Learning (RL) is a machine learning paradigm that ad-
dresses sequential decision-making problems in an unknown environment. Unlike the su-
pervised learning scenario in which a labeled training dataset is provided, in RL the agent
collects information by interacting with the environment through a course of actions. In ad-
dition to its success in empirical performance [27, 51, 52, 67], several works [13, 34, 35]
provide insightful and solid theoretical understandings of RL. RL is typically formulated as
the Markov Decision Processes (MDPs) problem [61]. The difficulty of solving an MDP is
primarily attributable to the inexact knowledge of the reward R and transition probability P .
To address the challenge, an alternative approach resorts to offline methods, where the agent
only has access to a given explorable dataset generated by a strategy. Many practical deep
RL algorithms employ the offline method and achieve state-of-the-art success empirically
[21, 46, 52]. However, it often takes incredibly large datasets to make modern RL algorithms
work. The matter of large sample size greatly hinders the application of RL in areas like
policy-making, finance, and healthcare, where it is extremely expensive or even impossible
to acquire such a large amount of data. Recently, there are many works focusing on sample
efficiency of offline RL from a theoretical perspective. Some prior works have provided solid
results on model-free offline methods [2, 8, 14] while others have considered model-based
approaches [66, 78, 82, 83]. Through these theoretical efforts, sample-efficiently learning a
near-optimal policy can be guaranteed, that is, the sample complexity is polynomial in pa-
rameters of the underlying MDPs.

In reality, sometimes the environment used to generate the offline dataset may be different
from the real-world MDPs, resulting in suboptimal performance of the policy obtained by

Received November 2021; revised July 2022.
MSC2020 subject classifications. Primary 62C05, 62F12; secondary 68Q32.
Key words and phrases. Model-based reinforcement learning, robust MDPs, distributional robustness, f -

divergence set.

3223

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/22-AOS2225
http://www.imstat.org
mailto:yangwenhaosms@pku.edu.cn
mailto:zhangliangyu@pku.edu.cn
mailto:zhzhang@math.pku.edu.cn
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


3224 W. YANG, L. ZHANG AND Z. ZHANG

RL algorithms. A well-known example is the sim-to-real gap [57, 84], which suggests that
an RL-based robot controller trained in a simulated environment may perform poorly in the
real world. A similar phenomenon also occurs in application scenarios such as healthcare
and finance problems. For example, we may seek a dynamic treatment regime that would be
deployed in hospital A using RL algorithms. However, the only available dataset is collected
in hospital B. Naively performing RL algorithms with the given dataset and deploying the
resulting regime in hospital A may cause bad outcomes. In addition, Mannor et al. [50] also
showed that the value function might be sensitive to estimation errors of reward and transition
probability, which means a small perturbation of reward and transition probability could incur
a significant change in the value function. Then, robust MDPs [32, 55] have been proposed to
handle these issues, where the transition probability is allowed to take values in an uncertainty
set (or ambiguity set). In this way, the solution of robust MDPs is less sensitive to model
estimation errors with a properly chosen uncertainty set P̂ .

In order to solve the robust MDP problem efficiently, one commonly makes the assumption
that the uncertainty set P̂ is either (s, a)-rectangular or s-rectangular [32, 55, 74], which stand
for the transition probability P taking values independently for each state-action (s, a) pair or
each state s ∈ S , respectively. Compared with (s, a)-rectangular assumption, s-rectangular is
a more general assumption to alleviate conservative policies and can provide stronger robust-
ness guarantees [74]. Without these two assumptions, Wiesemann, Kuhn and Rustem [74]
proved that solving robust MDPs could be NP-hard. However, under the (s, a)-rectangular or
s-rectangular assumptions, the near-optimal robust policy and value function can be obtained
efficiently. With these assumptions, Iyengar [32] and Nilim and El Ghaoui [55] proposed
multiple choices of uncertainty sets under rectangular assumptions mentioned above, all of
which are specific cases of f -divergence balls located around the estimated transition proba-
bility, including the L1 distance, χ2 and KL divergence balls. The most widely studied case
is the so-called L1 uncertainty set [3, 23, 31, 60] because it can be solved by the powerful
linear programming methods.

In recent years, many works [25, 31, 47] have come up with efficient algorithms to solve
robust MDPs, obtaining the optimal robust policy and value function. However, little theory
has been developed on the statistical performances of the optimal robust policy and value
function. Specifically, two core questions remain open: (a) How many samples are sufficient
to guarantee the accuracy of the robust estimators? (b) Is it possible to make statistical in-
ferences from the robust estimators? In this paper, we figure out both the finite-sample and
asymptotic performances of the optimal robust policy and value function in different scenar-
ios and answer these questions conclusively. Specifically, our nonasymptotic results in Sect. 3
show that sample-efficient reinforcement learning is possible in robust MDPs, which breaks
the misconception that robust MDPs are exponentially hard in terms of effective horizon
(1 − γ )−1 [85]. And our asymptotic results in Sect. 4 allow us to make statistical inferences
from the robust estimators.

1.1. Contributions. Let V π
r (μ) be the robust value function of policy π under uncer-

tainty set P (unknown) and initial state distribution μ, and V̂ π
r (μ) be its empirical version

under estimated uncertainty set P̂ . We denote by π̂∗ ∈ argmaxπ V̂ π
r (μ) the optimal robust

policy, and by V̂ ∗
r (μ) := maxπ V̂ π

r (μ) the optimal robust value function. Rather than provid-
ing a new efficient algorithm to solve robust MDPs, we take efforts to study the statistical
performances of optimal robust value function V̂ ∗

r (μ) and robust policy π̂∗ from both finite-
sample and asymptotic perspectives. We mainly consider the frequently used data generating
approach (i.e., generative models), from which we are able to estimate the transition prob-
ability P̂ . Moreover, we consider three different uncertainty sets P : L1, χ2, and KL balls
under both (s, a) and s-rectangular assumptions, which are frequently applied in the field of
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TABLE 1
The sample complexity of achieving ε deviation bound (1) in the generative model setting (Theorem 3.1). Here

|S| and |A| are the sizes of the state space and action space, γ ∈ (0,1) is a discount factor, ρ represents the size
of uncertainty set in Examples 2.1 and 2.2, and p = minP ∗(s′|s,a)>0 P ∗(s′|s, a)

Uncertainty set (s, a)-rectangular (Theorem 3.1) s-rectangular (Theorem 3.2)

L1 Õ(
|S|2|A|(2+ρ)2

ε2ρ2(1−γ )4 ) Õ(
|S|2|A|2(2+ρ)2

ε2ρ2(1−γ )4 )

χ2 Õ(
|S|2|A|(1+ρ)2

ε2(
√

1+ρ−1)2(1−γ )4 ) Õ(
|S|2|A|3(1+ρ)2

ε2(
√

1+ρ−1)2(1−γ )4 )

KL Õ(
|S|2|A|

ε2ρ2p2(1−γ )4 ) Õ(
|S|2|A|2

ε2ρ2p2(1−γ )4 )

robust MDPs. Although all of the uncertainty sets can be cast into the family of so-called
f -divergence uncertainty sets, we find it difficult to analyze their finite-sample performance
by a general calculation technique. Thus, we analyze the statistical performance of different
settings separately and summarize our results in the following parts. For practitioners, our
sample complexity results indicate how much data is enough for learning a near-optimal pol-
icy in a robust MDP, thus guiding the data-collection process. Our sample complexity results
can also serve as theoretical guarantees for the optimality of the learned policy, that is, with
a fixed dataset we may describe the minimum level of optimality for our learned policy. In
addition, our asymptotic results allows practitioners to make statistical inference for optimal
robust value functions. Here are some take-home messages from our results:

(a) Sample-efficient results can be guaranteed with (s, a)-rectangular or s-rectangular as-
sumptions in robust MDPs (upper bound of finite-sample results);

(b) Robust MDPs may have a lower sample complexity than original MDPs when the size
of uncertainty set is large (upper and lower bounds of finite-sample results);

(c) Robust MDPs under s-rectangular assumption require more samples than that with
(s, a)-rectangular assumption (upper bound of finite-sample results);

(d) Statistical inference for optimal robust value function is possible (asymptotic results).

Finite-sample results. A key criterion of evaluating the finite-sample performance is the
following deviation:

max
π

V π
r (μ) − V π̂∗

r (μ).(1)

In this paper, we use a uniform convergence analysis to control Eqn. (1):

max
π

V π
r (μ) − V π̂∗

r (μ) ≤ 2 sup
π∈�

∣∣V π
r (μ) − V̂ π

r (μ)
∣∣.(2)

When the dataset is obtained by a generative model, we present the sample complexity of
achieving an ε deviation bound of Eqn. (1) in different settings in Table 1. The overall perfor-
mance among the different uncertainty sets is nearly the same up to some logarithmic factors

in the (s, a)-rectangular assumption, which is about Õ(
|S|2|A|

ε2ρ2(1−γ )4 ).1 Compared to the most
related work [85], which provided an exponential large sample complexity of robust MDPs,
we break the misconception that robust MDPs are exponentially harder than original MDPs
in terms of 1/(1 − γ ). We leave the detailed discussion of comparison in the related work
section.

We also derive sample complexity results under s-rectangular assumption, whose theoret-
ical properties are never studied before while it is a significant setting in robust MDPs [74].

1We use Õ(·) and �̃(·) to hide polylogarithmic factors and universal constants.



3226 W. YANG, L. ZHANG AND Z. ZHANG

TABLE 2
The sample complexity of achieving ε deviation bound (1) in the offline dataset. Here

νmin = mins,a,ν(s,a)>0 ν(s, a)

Uncertainty set (s, a)-rectangular (Theorem 9.1 [81]) s-rectangular (Theorem 9.2 [81])

L1 Õ(
|S|(2+ρ)2

νminε
2ρ2(1−γ )4 ) Õ(

|S||A|(2+ρ)2

νminε
2ρ2(1−γ )4 )

χ2 Õ(
|S|(1+ρ)2

νminε
2(

√
1+ρ−1)2(1−γ )4 ) Õ(

|S||A|2(1+ρ)2

νminε
2(

√
1+ρ−1)2(1−γ )4 )

KL Õ(
|S|

νminε
2ρ2p2(1−γ )4 ) Õ(

|S||A|
νminε

2ρ2p2(1−γ )4 )

Notably, the sample complexity would enlarge when we assume the uncertainty sets satisfy
the s-rectangular assumption in Table 1. The main difference is caused by the fact that the
optimal robust policy is deterministic [55] in the (s, a)-rectangular setting while stochastic
[74] in the s-rectangular setting. Thus, the uniform bound over the class of all possible poli-
cies (including stochastic and deterministic policies) could be worse than that over the class
of deterministic policies.

We also extend our analysis from estimation by a generative model to estimation by an
offline dataset, which is generated by a given behavior occupancy measure. As long as the
concentrability assumption given in [8] holds, the result of sample complexity only changes
by a factor of the concentrability coefficient, which can be referred to Table 2.

Lastly, we show that the sample complexity lower bounds of robust MDPs are
�̃(

|S||A|(1−γ )

ε2 min{ 1
(1−γ )4 , 1

ρ4 }) for the L1 ball and �̃(
|S||A|

ε2(1−γ )2 min{ 1
1−γ

, 1
ρ
}) for the χ2 ball,

but the lower bound of the KL uncertainty set is still lack of explicit expression. Both the up-
per and lower bound results imply that the robust MDPs can have a lower sample complexity
than original MDPs with a proper size ρ of uncertainty set.

Asymptotic results. Indeed, the finite-sample results only imply that V̂ ∗
r (μ) is ÕP (1/

√
n),

where a logarithmic factor of n exists. It is not sufficient to guarantee the convergence rate
of V̂ ∗

r (μ) to be 1/
√

n. Thus, statistical inference from finite-sample results is inaccurate and
we need more precise asymptotic results for more accurate statistical inference. Our another
contribution is showing that V̂ ∗

r (μ) is
√

n-consistent and also asymptotically normal, and
then we can derive statistical inference from data directly. We believe our asymptotic results
are novel and may open a new approach to statistical inference in robust MDPs.

Empirical studies. Finally, we evaluate our theoretical results on simulation experiments.
Under the (s, a)-rectangular assumption, we follow the classical algorithm Robust Value It-
eration [32]. Under the s-rectangular assumption, which is usually more difficult to solve,
Bisection Algorithm [30] is applied to obtain the near-optimal robust value function. In both
settings, our empirical results show that the performance of the near-optimal robust value
function is highly correlated with the number of generative samples. In a large sample regime,
we also find that the empirical coverage rate (also called confidence level) of the robust value
function is consistent with our theories. We leave more details in Section 5.

1.2. Related work. In this subsection, we summarize prior works on three topics: offline
RL, robust MDPs, and distributionally robust optimization (DRO).

Offline RL. Two most fundamental problems in offline RL are Off-Policy Evaluation (OPE)
and Off-Policy Learning (OPL). These two problems assume the agent is unable to interact
with the environment but only has access to a given explorable dataset. In terms of OPE
whose purpose is to estimate the value function with a given policy, there are mainly three
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different methods: Direct Method (DM), Importance Sampling (IS) [29, 44, 48, 69], and Dou-
bly Robust (DR) method [18, 20, 33, 38, 70]. Here we only discuss the most related method
DM. For DM, the usual treatment is firstly estimating the reward and transition probabil-
ity from the offline dataset, and then applying the model estimators to solve the empirical
MDP to obtain the value function. Mannor et al. [50] analyzed the bias and variance of the
value function estimation by applying frequency estimators of models in tabular MDPs. To
tackle large-scale MDP problems, Jong and Stone [37], Grünewälder et al. [26] proposed
other methods to estimate the model of dynamics. Bertsekas and Tsitsiklis [5], Dann et al.
[10], Duan, Jia and Wang [13] then extended the DM method to the setting of value function
approximation by different algorithms, including regression methods. It is more challenging
to analyze OPL (or Batch RL) than OPE, especially under function approximation settings,
because the goal of OPL is to learn the optimal policy from the given dataset. When certain
assumptions are made, many works have discussed the necessary and sufficient conditions for
efficient OPL and provided sample-efficient algorithms within different function hypothesis
classes [8, 14, 41, 42, 54, 73, 77, 82].

Robust MDPs3. Robust MDPs are related to DM in offline RL. The usual approach to solv-
ing robust MDPs is estimating the reward and transition probabilities firstly, and running
dynamic programming algorithms to obtain near-optimal solutions [32, 55]. Different from
the conventional MDPs [61], robust MDPs allow transition probability taking values in an
uncertainty set [49, 79] and aim to obtain an optimal robust policy that maximizes the worst-
case value function. Xu and Mannor [80], Petrik [58], Ghavamzadeh, Petrik and Chow [23]
showed that the solutions of robust MDPs are less sensitive to estimation errors. However, the
choice of uncertainty sets still matters with the solutions of robust MDPs. Wiesemann, Kuhn
and Rustem [74] concluded that with the (s, a)/s-rectangular and convex set assumptions,
the computation complexity of obtaining near-optimal solutions is polynomial.

If the uncertainty set is nonrectangular, the problem becomes NP-hard [74]. With the
(s, a)/s-rectangular set assumptions, many works have provided efficient learning algorithms
to obtain near-optimal solutions in different uncertainty sets [30–32, 39, 55, 68, 74]. In ad-
dition, Goyal and Grand-Clement [25] considered a more general assumption called the r-
rectangular when MDPs have a low dimensional linear representation. And Derman and Man-
nor [12] also proposed an extension of robust MDPs (called distributionally robust MDPs)
under the Wasserstein distance. Qi and Liao [62] considered the statistical theory in the aver-
age reward MDPs case, where they construct a L1 divergence uncertainty set in the space of
the visitation distributions. And their problem formulation is different from robust MDPs.

There are few works considering the nonasymptotic performances of optimal robust policy
as Eqn. (1) states. Si et al. [65] considered the asymptotic and nonasymptotic behaviors of
the optimal robust solutions in the bandit case when only the KL divergence is applied in
the uncertainty set. Zhou et al. [85] extended the nonasymptotic results of Si et al. [65] to
the infinite horizon RL case. More importantly, Zhou et al. [85] gave a sample complexity

bound Õ(
C|S|2

νminε
2ρ2(1−γ )2 ). However, they only considered the settings when the KL divergence

is applied in the uncertainty set and the (s, a)-rectangular assumption is made, while we
consider the settings of the KL ball and other uncertainty sets under both the (s, a) and s-
rectangular assumptions. In addition, the result of Zhou et al. [85] is exponentially dependent
on 1

1−γ
, which is hidden in an unspecified parameter C = exp( 1

β(1−γ )
). Indeed, the results of

3During the revising process of this manuscript, we noted one very latest paper [56] appeared online, which only
studies the finite-sample results of robust MDPs under the (s, a)-rectangular assumption. Compared with their
finite-sample results, our corresponding results keep the same as theirs when the L1 uncertainty set is applied.
However, our results have a better dependence on (1−γ )−1 and ε in cases of both the χ2 and KL uncertainty sets,
whereas their bound still has an exponential dependence on (1 − γ )−1 when the KL uncertainty set is applied.
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Zhou et al. [85] gave readers a misconception that robust MDPs are exponentially hard than
original MDPs in terms of 1/(1 − γ ). In this paper, we break this misconception and prove
that robust MDPs can be sample efficient and have lower sample complexity than original
MDPs. It is also worth pointing out that an unknown parameter β is hidden in C, which is
an optimal solution for a convex problem and has no explicit expression. In our work, we
improve their results to a polynomial and explicit sample complexity bound, which is shown
in Tables 1 and 2.

Distributionally Robust Optimization (DRO). Handling uncertainty sets in robust MDPs is
relevant with Distributionally Robust Optimization (DRO), where the objective function is
minimized with a worst-case loss function. The core motivation of DRO is to deal with the
distribution shift of data using different uncertainty sets. Bertsimas, Gupta and Kallus [6],
Delage and Ye [11] formulated the uncertainty set by moment conditions, while Ben-Tal
et al. [4], Duchi, Glynn and Namkoong [16], Duchi and Namkoong [15], Lam [40], Duchi
and Namkoong [17] formulated the uncertainty set by f -divergence balls. In addition, Woz-
abal [75], Blanchet and Murthy [7], Gao and Kleywegt [22], Lee and Raginsky [43] also
considered Wasserstein balls, which is more computationally challenging. The most related
work with our results is Duchi and Namkoong [17], which considered the asymptotic and
nonasymptotic performances of the empirical minimizer on a population level. However, the
result of Duchi and Namkoong [17] is mainly built on the supervised learning scenario, while
our results are built on robust MDPs. Recently, a line of works [9, 36, 76] has studied the con-
nection between pessimistic RL and DRO.

2. Preliminaries.

Markov decision processes. A discounted Markov decision process is defined by a 5-tuple
(S,A,R,P, γ ), where S is the state space and A is the action space. In this paper, we assume
both S and A are finite discrete spaces. The reward function satisfies R : S × A → [0,1],
the transition probability satisfies P : S × A → �(S), where �(X ) = {P : ∑

x∈X P(x) =
1,P (x) ≥ 0} is a set containing all probability measures on a given finite space X , and
γ ∈ [0,1) is the discount factor. A stationary policy π is defined as π : S → �(A) and the
value function of a policy π is defined as V π

P (s) = Eτ∼π [∑∞
t=0 γ tR(st , at )|s0 = s], where

τ ∼ π stands for the trajectory τ = (s0, a0, s1, a1, . . .) generated according to policy π and
transition probability P . Furthermore, if the initial distribution μ is given, the value function
is V π

P (μ) = Es0∼μV π
P (s0). The goal of learning an MDP is to solve the problem maxπ V π

P (s)

for all s ∈ S or maxπ V π
P (μ). We denote the optimal value V ∗

P (s) := maxπ V π
P (s).

Robust Markov decision processes. A robust approach to solving MDP is considering the
worst MDP case. The robust value function is V π

r (s) = infP∈P V π
P (s), where transition prob-

ability P is taken in a given uncertainty set P . The goal of learning a robust MDP is to solve
the problem maxπ infP∈P V π

P (s) for all s ∈ S or maxπ infP∈P V π
P (μ). We denote the optimal

robust value function as V ∗
r (s) = maxπ infP∈P V π

P (s).

Assumptions on uncertainty set P . Even though there are various choices of uncertainty set
P , the existence of a stationary robust optimal policy w.r.t. a robust MDP is only guaranteed
when some conditions of uncertainty set P are satisfied. Iyengar [32], Nilim and El Ghaoui
[55] proposed the (s, a)-rectangular set assumption on uncertainty set P , which is detailed in
Assumption 2.1.

ASSUMPTION 2.1 ((s, a)-rectangular). The uncertainty set P is called an (s, a)-
rectangular set if it satisfies

P = ×
(s,a)∈S×A

Ps,a,

where Ps,a ⊆ �(S) and “×” represents the Cartesian product.
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It is shown that the optimal robust policy is stationary and deterministic4 under Assump-
tion 2.1. In addition, Epstein and Schneider [19], Wiesemann, Kuhn and Rustem [74] pro-
posed an extensive version s-rectangular set, which is detailed in Assumption 2.2.

ASSUMPTION 2.2 (s-rectangular). The uncertainty set P is called an s-rectangular set if
it satisfies

P = ×
s∈S

Ps,

where Ps ⊆ �(S)|A| and �(S)|A| := {(Pa)a∈A|Pa ∈ �(S), for all a ∈ A}.

It is shown that the optimal robust policy is stationary, while the optimal robust policy
could be stochastic5 instead of deterministic under Assumption 2.2. For a more general un-
certainty set, Wiesemann, Kuhn and Rustem [74] mentioned that it could be NP-hard to obtain
the optimal robust policy, which could also be nonstationary and stochastic.

Examples of uncertainty set. Currently, the most frequently used uncertainty sets can all be
categorized to the f -divergence set as Examples 2.1 and 2.2 state, where P ∗ is the center
transition probability and ρ determines the size of sets. Iyengar [32] used the L1 uncertainty
set when setting f (t) = |t − 1|. And Nilim and El Ghaoui [55] used the KL uncertainty
set when setting f (t) = t log t . In DRO, Duchi and Namkoong [17] used a more general
form of f (t) ∝ tk where k > 1, while we only consider k = 2 in this paper. As we focus on
the statistical performances of robust MDPs, we use Ps,a(ρ), Ps(ρ) and P to represent the
uncertainty sets when true transition probability P ∗ is applied. And we use P̂s,a(ρ), P̂s(ρ)

and P̂ to represent the uncertainty sets when estimated transition probability P̂ is applied.

EXAMPLE 2.1 (f -divergence under the (s, a)-rectangular assumption). For each (s, a)

pair, we denote the center probability by P ∗(·|s, a) and the size of the set by ρ > 0. The
f -divergence (s, a)-rectangular set is defined by

Ps,a(ρ) =
{
P ∈ �(S)|P  P ∗(·|s, a)6,

∑
s′∈S

f

(
P(s′)

P ∗(s′|s, a)

)
P ∗(

s′|s, a) ≤ ρ

}
.

EXAMPLE 2.2 (f -divergence under the s-rectangular assumption). For each s ∈ S , we
denote the center probability by P ∗(·|s, a) and the size of the set by ρ > 0. The f -divergence
s-rectangular set is defined by

Ps(ρ) =
{
P ∈ �(S)|A||P(·|a)  P ∗(·|s, a),

∑
s′∈S,a∈A

f

(
P(s′|a)

P ∗(s′|s, a)

)
P ∗(

s′|s, a) ≤ |A|ρ
}
.

Connection with nonrobust MDPs. In our settings (Examples 2.1 and 2.2), the parameter
ρ controls the difference between robust value function V π

r and nonrobust value function
V π . Intuitively, we would expect a small difference for a small ρ, which is quantified by the
following theorem.

4A deterministic policy stands for π(a|s) ∈ {0,1} for all (s, a) ∈ S ×A.
5A stochastic policy stands for π(a|s) ∈ [0,1] for all (s, a) ∈ S ×A.
6For any two probability measures P,Q supporting on a finite set X , P  Q stands for P is absolutely con-

tinuous w.r.t. Q, which means for any x ∈X , Q(x) = 0 implies P(x) = 0.
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THEOREM 2.1. If there exists a monotonically increasing and concave function h(t) :
R+ →R+ such that for any probability distributions P,Q ∈ �(S) with P  Q:∑

s∈S

∣∣P(s) − Q(s)
∣∣ ≤ h

(∑
s∈S

f

(
P(s)

Q(s)

)
Q(s)

)
,(3)

then for any fixed policy π , we have

∥∥V π
r − V π

P ∗
∥∥∞ ≤

⎧⎪⎪⎨⎪⎪⎩
γ h(ρ)

(1 − γ )2 if Example 2.1 is applied,

γ |A|h(ρ)

(1 − γ )2 if Example 2.2 is applied.

Specifically, if we use f (t) = |t − 1|, (t − 1)2, and t log t , respectively, then h(t) = t ,
√

t , and√
2t , respectively.7

Performance gap of robust MDPs. We usually do not have access to the true transition
probability P ∗ but an unbiased estimated transition probability P̂ can be obtained from
a dataset. The empirical optimal robust policy is given by π̂∗ = argmaxπ V̂ π

r (μ), where
V̂ π

r (μ) = infP∈P̂ V π
P (μ). To examine the performance of empirical solution π̂∗, we evalu-

ate it by the following performance gap:

max
π

V π
r (μ) − V π̂∗

r (μ).(4)

Following the uniform convergence argument in statistical learning theory [28, 53], we can
bound this gap by a uniform excess risk [53] as Lemma 2.1 states. For any fixed policy π , we
note that V̂ π

r is a fixed point of robust Bellman operator T̂ π
r , which is similar to the nonrobust

case [61]. Thus, we can further bound the uniform excess risk as Lemma 2.2 states. Indeed,
as long as T̂ π

r V approximates T π
r V with enough samples for fixed V ∈ V and π ∈ �, we

can bound the supreme of the uniform excess risks by union bound over � and V .

LEMMA 2.1. Denote π̂∗ = argmaxπ∈� V̂ π
r (μ), where V̂ π

r (μ) = infP∈P̂ V π
P (μ) and P̂ is

the uncertainty set with P̂ applied. Then the following inequality holds:

0 ≤ max
π

V π
r (μ) − V π̂

r (μ) ≤ 2 sup
π∈�

∣∣V π
r (μ) − V̂ π

r (μ)
∣∣,

where � = �(A)|S| contains all probability measures in simplex �(A) for each s ∈ S .

LEMMA 2.2. Denoting V π
r = (V π

r (s))s∈S and V̂ π
r = (V̂ π

r (s))s∈S , we have∥∥V π
r − V̂ π

r

∥∥∞ ≤ 1

1 − γ
sup
V ∈V

∥∥T π
r V − T̂ π

r V
∥∥∞,

where T π
r V = Rπ + γ infP∈P P πV , T̂ π

r V = Rπ + γ infP∈P̂ P πV for any V ∈ V :=
[0, 1

1−γ
]|S| and Rπ(s) := ∑

a∈A R(s, a)π(a|s), P π(s′|s) := ∑
a∈A P(s′|s, a)π(a|s).

REMARK 2.1. In this paper, we consider T̂ π
r V = Rπ + γ infP∈P̂ P πV with a deter-

ministic reward. If R(s, a) is a bounded random variable for each (s, a) ∈ S × A, we could
easily obtain that sups,a |R̂(s, a) − ER(s, a)| ≤ Õ(n−1/2) with high probability by Hoeffd-
ing’s inequality, which is much smaller than the statistical error incurred by estimation of the
transition probability.

7The specific result is obtained by Cauchy–Schwarz inequality and Pinsker’s inequality, see Sason and Verdú
[63] for details.
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Now our goal is to evaluate the supreme of ‖T π
r V − T̂ π

r V ‖∞ over V and �. To do so, we
need to estimate the sizes of V and � to apply concentration inequalities over the whole sets.
Noting that V is an infinite subset of R|S|, we apply Lemma 2.3 to discretize the value space V
and bound the performance gap. To discretize the policy set �, we consider two cases. When
the (s, a)-rectangular assumption holds, the optimal robust policy is deterministic, leading to
the policy class being finite (i.e., |�| = |A||S|). However, when the s-rectangular assumption
holds, the optimal policy may be stochastic instead of deterministic, which means the policy
class is infinite. Thus, we need Lemma 2.4 to help us control the deviation. We also prove
that the covering numbers of V and � are bounded as Lemma 2.5 states, which can be used
to bound the supreme value over Vε and �ε .

LEMMA 2.3. Let Vε := N (V ,‖ · ‖∞, ε) denote the smallest ε-net of V w.r.t. norm ‖ · ‖∞,
which satisfies ∀V ∈ V there exists a V0 ∈ Vε such that ‖V − V0‖∞ ≤ ε. Then we have

sup
V ∈V

∥∥T π
r V − T̂ π

r V
∥∥∞ ≤ 2γ ε + sup

V ∈Vε

∥∥T π
r V − T̂ π

r V
∥∥∞.

LEMMA 2.4. Let �ε := N (�,‖ · ‖1, ε) denote the smallest ε-net of � w.r.t. norm ‖ · ‖1,
which satisfies ∀π ∈ � there exists a π0 ∈ �ε such that ‖π(·|s)−π0(·|s)‖1 ≤ ε for all s ∈ S .
Then we have

sup
π∈�,V ∈V

∥∥T π
r V − T̂ π

r V
∥∥∞ ≤ 2γ ε

1 − γ
+ sup

π∈�ε,V ∈V
∥∥T π

r V − T̂ π
r V

∥∥∞.

LEMMA 2.5. The cardinalities of Vε in Lemma 2.3 and �ε in Lemma 2.4 can be respec-
tively bounded by

|Vε| ≤
(

1 + 1

(1 − γ )ε

)|S|
and |�ε| ≤

(
1 + 4

ε

)|S||A|
.

REMARK 2.2. We give a high-level idea on the construction of Vε and �ε in Lemma 2.5.
For Vε , we can just divide [0,1/(1 − γ )] into a grid consisting of ε-sized subintervals at each
dimension s ∈ S . For �ε , we can use L1 balls in R

|A|−1 with size ε to cover the entire policy
space.

3. Nonasymptotic results. In this section, we assume there is access to a generative
model such that for any given pair (s, a) ∈ S × A, it is able to return an arbitrary value of
next states s′ following probability P ∗(·|s, a). Thus, according to the generated samples, we
can construct the empirical estimation of transition probability P ∗ by

P̂
(
s′|s, a) = 1

n

n∑
k=1

1
(
X

s,a
k = s′),(5)

where {Xs,a
k }nk=1 are i.i.d. samples generated from P ∗(·|s, a). Thus, P̂ is an unbiased estima-

tor of P ∗. With the generative model, our nonasymptotic results are stated in the following
theorems. In our proof, as the dual problems differ for different choices of f , it is unlikely to
obtain a unified concentration result covering all the three settings (L1, χ2, and KL cases).
Before presenting theoretical results, the proof sketch is as follows:

• First, for any fixed π ∈ � and V ∈ V , we calculate the dual forms of T π
r V (s) and T̂ π

r V (s)

for all s ∈ S for the different uncertainty sets.
• Second, we bound the concentration error ‖T π

r V − T̂ π
r V ‖∞ for fixed π ∈ � and V ∈ V

from the dual forms.



3232 W. YANG, L. ZHANG AND Z. ZHANG

• Next, as ‖T π
r V − T̂ π

r V ‖∞ is Lipschitz w.r.t. V ∈ V in norm ‖ · ‖∞, we can derive a union
bound over V ∈ V by Lemma 2.3.

• Finally, under the (s, a)-rectangular assumption, the optimal robust policy is deterministic.
Thus, we can derive a union bound over the deterministic policy class, which is finite
and satisfies |�| = |A||S|. However, when we consider the s-rectangular assumption, the
optimal robust policy may be stochastic, which leads to the policy class � to be infinitely
large. According to Lemma 2.4, we can also derive a union bound over � by taking an
ε-net of �.

REMARK 3.1. We can also extend our nonasymptotic results in this section to the setting
with an offline dataset, which can be referred to in Section 9 of the Supplementary Material
[81].

3.1. Results with the (s, a)-rectangular assumption. Taking f (t) = |t − 1|, f (t) = (t −
1)2, and f (t) = t log t in Example 2.1, respectively, we have the following results when the
(s, a)-rectangular assumption holds.

THEOREM 3.1. Under the (s, a)-rectangular assumption, the following results hold:

(a) If f (t) = |t − 1| in Example 2.1 (L1 balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 2(2 + ρ)γ
√|S|

ρ(1 − γ )2
√

2n

(
2 +

√√√√log
4|S||A|2[1 + 2(2 + ρ)

√
2n]2

δ(2 + ρ)

)
.

(b) If f (t) = (t − 1)2 in Example 2.1 (χ2 balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 2C2(ρ)γ
√|S|

(C(ρ)−1)(1−γ )2
√

n

(
4+

√
2 log

2|S||A|2[1+4C(ρ)
√

n]2

δC2(ρ)

)
,

where C(ρ) = √
1 + ρ.

(c) If f (t) = t log t in Example 2.1 (KL balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 4γ
√|S|

ρ(1 − γ )2p
√

n

(
1 +

√
log

2|S|2|A|2[1 + ρp
√

n]
δ

)
,

where p = minP ∗(s′|s,a)>0 P ∗(s′|s, a).

As a brief sum-up, in order to achieve an ε performance gap, the number of generated sam-

ples should be ntot := n×|S||A| = Õ(
|S|2|A|

ε2ρ2(1−γ )4 ) in all the cases under the (s, a)-rectangular
assumption, up to some logarithmic factors.

And notably, in Theorem 3.1(c), an additional factor 1/p occurs in the upper bound, which
seems unavoidable. From a high-level point of view, the core step in Theorem 3.1(c) can be
expressed by bounding the deviation | log 1

n

∑
i Xi − logμ| with EXi = μ, where the factor

1/μ plays a significant role on the sample complexity. Fortunately, compared to Zhou et al.
[85], whose finite-sample result in the KL setting is exponentially dependent on 1

1−γ
, our

result in the KL setting is only polynomially dependent on 1
1−γ

.

3.2. Results with the s-rectangular assumption. Taking f (t) = |t − 1|, f (t) = (t − 1)2,
and f (t) = t log t in Example 2.2, respectively, we have the following results when the s-
rectangular assumption holds.
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THEOREM 3.2. Under the s-rectangular assumption, the following results hold:

(a) If f (t) = |t − 1| in Example 2.1 (L1 balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 2γ (2 + ρ)
√|S||A|

ρ(1 − γ )2
√

2n

(
4 +

√
log

2|S|(1 + 2
√

2n(ρ + 4))3

δ

)
.

(b) If f (t) = (t − 1)2 in Example 2.1 (χ2 balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 2γC2(ρ)

√
|S||A|2

(C(ρ) − 1)(1 − γ )2
√

n

(
6 +

√
2 log

2|S|(1 + 8
√

nC(ρ))3

δ

)
,

where C(ρ) = √
1 + ρ.

(c) If f (t) = t log t in Example 2.1 (KL balls), then with probability 1 − δ:

max
π

V π
r (μ) − V π̂

r (μ) ≤ 4γ
√|S||A|

ρp(1 − γ )2
√

n

(
2 +

√
2 log

2|S|2|A|(1 + 4ρp
√

n)

δ

)
,

where p = minP ∗(s′|s,a)>0 P ∗(s′|s, a).

Under the s-rectangular assumption, the optimal robust policy can be stochastic. In this
case, the policy class � is infinitely large. By controlling the deviation through Lemma 2.4,
there could be an amplification in the statistical error. In the cases of both the L1 and KL

balls, the total sample complexity to achieve an ε performance gap is ntot = Õ(
|S|2|A|2

ε2ρ2(1−γ )4 ).

But in the case of the χ2 balls, the total sample complexity is ntot = Õ(
|S|2|A|3

ε2ρ2(1−γ )4 ), which is
larger than others and caused by the specific dual solution of T π

r V .

3.3. Discussion on ρ. All of the results under the (s, a) and s-rectangular assumptions
suggest that the sample complexity would be unbounded when ρ → 0. To illustrate this phe-
nomenon, we consider a simple distributionally robust optimization problem:

inf
Q

|X |∑
i=1

QiVi,(6)

s.t.
|X |∑
i=1

f

(
Qi

Pi

)
Pi ≤ ρ,(7)

|X |∑
i=1

Qi = 1,Qi ≥ 0, ∀i = 1, . . . , |X |.(8)

Here we assume P ∈ �(X ) and Pi > 0 for all i. In addition, f is a convex function such that
f (1) = 0 and Vi ∈ [0,M] for all i. We denote the optimal value of the above problem (6) as
g(P,ρ). Now if we have an unbiased estimator P̂ of P , we would like to know the absolute
error between g(P,ρ) and g(P̂ , ρ). However, we cannot apply concentration inequality to
g(P̂ , ρ) directly as the randomness is hidden in the constraint (7). Fortunately, we can write
the dual problem of g(P,ρ) and prove the strong duality [64]. In this case, the randomness
is displayed in the dual objective (9), where f ∗(y) = − infx≥0 f (x) − xy is the conjugate
function of f . We denote the dual objective (9) as d(P,ρ), That is,

sup
λ≥0,β∈R

−
|X |∑
i=1

λPif
∗
(
−Vi + β

λ

)
− λρ − β.(9)
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To control the error |d(P̂ , ρ) − d(P,ρ)|, we have to determine the range of dual variables
λ and β based on the specific choice of f . Then we can apply concentration inequalities
uniformly over the range of dual variables. However, the range of dual variables will enlarge
to infinity when ρ goes to zero. In this case, the uniform concentration inequalities will suffer
error amplification, which leads to infinite sample complexity. Alternatively, by Theorem 2.1
(setting γ = 0 in this case) and Hoeffding’s inequality [72], we can upper bound the primal
error by∣∣g(P̂ , ρ) − g(P,ρ)

∣∣ ≤ ∣∣g(P̂ , ρ) − g(P̂ ,0)
∣∣ + ∣∣g(P,ρ) − g(P,0)

∣∣ + ∣∣g(P̂ ,0) − g(P,0)
∣∣

≤ O
(
h(ρ)

) + ∣∣g(P̂ ,0) − g(P,0)
∣∣

= O
(
h(ρ)

) + Õ
(

1√
n

)
.

In this case, when ρ approaches zero, we can apply the nonrobust results instead. When
we extend the analysis to the setting of robust MDPs with ρ → 0, we can alternatively upper
bound the performance gap by∥∥V ∗

r − V π̂
r

∥∥∞ ≤ 2 sup
π∈�

∥∥V π
r − V̂ π

r

∥∥∞

≤ 2 sup
π∈�

∥∥V π
r − V π

P ∗
∥∥∞ + 2 sup

π∈�

∥∥V π
P ∗ − V π

P̂

∥∥∞ + 2 sup
π∈�

∥∥V π
P̂

− V̂ π
r

∥∥∞

≤ O
(

h(ρ)

(1 − γ )2

)
+ 2 sup

π∈�

∥∥V π
P ∗ − V π

P̂

∥∥∞

= O
(

h(ρ)

(1 − γ )2

)
+ Õ

(√
|S|

(1 − γ )4n

)
,

where the first inequality is due to Lemma 2.1, the second inequality holds by error decom-
position, the third inequality holds by Theorem 2.1, and the last equality holds by sample
complexity of nonrobust MDPs with a generative model [1, 24]. In other words, we should
not expect robustness when ρ → 0, which also coincides with the theoretical results of the
lower bound in the next part.

3.4. Lower bound. To complement our nonasymptotic analysis, here we provide the
lower bound results of robust MDPs with a generative model. The MDP we construct in
Theorem 3.3 is a classic 2-state MDP with only one action, which is frequently analyzed in
[14, 24]. The details can be found in Section 8 of the Supplementary Material [81].

THEOREM 3.3 (Lower bound). There exists a class of robust MDPs with a f -divergence
uncertainty set, such that for every (ε, δ)-correct robust RL algorithm A , the total number of
generated samples needs to be at least

�̃

( |S||A|(g′(p))2p(1 − p)

ε2(1 − γg(p))4

)
,

where p ∈ (0,1), g(p) = infDf (q‖p)≤ρ q and Df (q‖p) = pf (
q
p
) + (1 − p)f (

1−q
1−p

).

In Theorem 3.3, the parameter p can take arbitrary values in (0,1) while we always set p

close to 1. Next, we give the exact lower bounds in the following corollaries when the L1 and
χ2 uncertainty sets are considered. However, when we consider the KL uncertainty set, there
is no explicit form of lower bound by the fact that there is no closed-form expression of g(p)

when f (t) = t log t .
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COROLLARY 3.1 (Lower bound for the L1 case). Given that f (t) = |t − 1| and p =
2γ−1

γ
in Theorem 3.3, the lower bound of sample complexity is

�̃

( |S||A|(1 − γ )

ε2 min
{

1

(1 − γ )4 ,
1

ρ4

})
.

COROLLARY 3.2 (Lower bound for the χ2 case). Given that f (t) = (t − 1)2 and p =
2γ−1

γ
in Theorem 3.3, the lower bound of sample complexity is

�̃

( |S||A|
ε2(1 − γ )2 min

{
1

1 − γ
,

1

ρ

})
.

From Corollaries 3.1 and 3.2, we observe that when ρ ≤ (1 − γ ), the lower bound is
exactly �̃(

|S||A|
ε2(1−γ )3 ), which coincides with the lower bound of classic MDPs with a generative

model [24]. When ρ > (1 − γ ), the lower bounds are �̃(
|S||A|(1−γ )

ε2ρ4 ) for the L1 case and

�̃(
|S||A|

ε2ρ(1−γ )2 ) for the χ2 case.
It is worth noting that a gap exists between the upper bound and lower bound. It is be-

cause we obtain the upper bound via a uniform convergence analysis over the whole value
space V and policy space �. If we are able to find the local deviation bound near the optimal
robust value function V ∗

r , the upper bound can be tighter and the gap may also be closed.
Unfortunately, we have no additional information of V ∗

r except for the robust Bellman equa-
tion V ∗

r = TrV
∗
r , which is insufficient to perform a precise local analysis. We think it is an

important work to close the gap and we leave it to subsequent works.

4. Asymptotic results. From the theoretical results of Section 3, we obtain that the sta-
tistical convergence rate of robust MDPs is Õp(1/

√
n).8 In this section, we investigate the

asymptotic properties of robust MDPs. Specifically, in the context of robust MDPs, we show
that the robust value function V̂ π

r (μ) (given policy π ) and the optimal robust value function
V̂ ∗

r (μ) are
√

n-consistent and asymptotically normal in both the (s, a)/s-rectangular settings.
Before presenting our results, we first give a high-level idea about how we prove the empirical
robust value function to be asymptotically normal.

• Firstly, for any fixed policy π ∈ �, we prove the empirical robust Bellman noise is asymp-
totically normal with a variance matrix �π ∈ R

|S|×|S|:
√

n
(
T̂ π

r V π
r − T π

r V π
r

) d→ N
(
0,�π )

.

• Noting that V̂ π
r = T̂ π

r V̂ π
r , we prove that there exists a matrix M̂π ∈ R

|S|×|S|, which is the
derivative of the operator I − T̂ π

r at the point V π
r , such that√

n
(
T̂ π

r V π
r − T π

r V π
r

) = √
n
(
T̂ π

r V π
r − T̂ π

r V̂ π
r

) − √
n
(
T π

r V π
r − T̂ π

r V̂ π
r

)
= √

n
(
T̂ π

r V π
r − T̂ π

r V̂ π
r

) − √
n
(
V π

r − V̂ π
r

)
= −M̂π · √n

(
V π

r − V̂ π
r

) + oP

(√
n
∥∥V π

r − V̂ π
r

∥∥)
.

• Because the LHS above is asymptotically normal, we can prove that
√

n(V π
r −V̂ π

r ) =
OP (1). By proving that M̂π is consistent to Mπ , we obtain the final result:

√
n
(
V π

r − V̂ π
r

) d→ N
(
0,

(
Mπ )−1

�π (
Mπ )−�)

.

8For any two random variable sequences {Xn}n≥1 and {Yn}n≥1, Xn = oP (Yn) stands for Xn/Yn converges to
zero in probability as n goes infinity, and Xn = OP (Yn) stands for Xn/Yn is bounded in probability. See [71] for
more details.
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• Also, we can extend the results to the case of optimal policies and leave the discussion of
this result in Sections 4.1 and 4.2:

√
n
(
max

π
V π

r − max
π

V̂ π
r

)
d→ N

(
0,

(
Mπ∗)−1

�π∗(
Mπ∗)−�)

.

4.1. Results with the (s, a)-rectangular assumption. We consider the asymptotic behav-
iors of robust value function under (s, a)-rectangular assumptions. From Section 3, we can
deduce that the estimator V̂ π

r (μ) converges to V π
r (μ) almost surely (also converges in prob-

ability) for a given policy π , which can be seen in Section 11 of the Supplementary Material
[81]. Furthermore, V̂ π

r (μ) is also asymptotically normal with rate
√

n by the following re-
sults.

THEOREM 4.1. Without loss of generality, we assume V π
r (s1) < · · · < V π

r (s|S|). Under
the (s, a)-rectangular assumption, we have that for any fixed policy π ∈ �,

√
n
(
V̂ π

r (μ) − V π
r (μ)

) d→ N
(
0,μ�(

Mπ )−1
�π (

Mπ )−�
μ

)
,

where �π is the asymptotic variance of empirical robust Bellman error, and Mπ is the deriva-
tive of the operator I − T π

r at the point V π
r . Specifically, �π = diag{σ 2

1 (π), . . . , σ 2|S|(π)}
where σ 2

s (π) = γ 2 ∑
a∈A π(a|s)2σ 2(P ∗(·|s, a),V π

r ). And:

(a) If f (t) = |t − 1| in Example 2.1 (L1 balls), then the (i, j)th element of Mπ is

Mπ(i, j) = 1{i = j} − γ
∑
a∈A

π(a|si)
[
P(sj |si, a)1

{
j < K

(
P(·|si, a)

)}
−

( ∑
k<K(P (·|si ,a))

P (sk|si, a) −
(

1 − ρ

2

))
1
{
j = K

(
P(·|si, a)

)} + ρ

2
1{j = 1}

]
,

where K(P ) := min{l ∈ Z+|∑k≤l P (sk) > 1 − ρ/2} for any P ∈ �(S).
And σ 2(P ∗(·|s, a),V π

r ) = (bπ
s,a)

��s,ab
π
s,a where

�s,a(i, j) = −P ∗(si |s, a)P ∗(sj |s, a) + P ∗(si |s, a)1{i = j},
bπ
s,a(i) = −(

η∗(
P ∗(·|s, a),V π

r

) − V π
r (si)

)
+,

and η∗ is the dual solution of T π
r V π

r .
(b) If f (t) = (t − 1)2 in Example 2.1 (χ2 balls), then the (i, j)th element of Mπ is

Mπ(i, j) = 1{i = j}

− γ
∑
a

π(a|si)C(ρ)
P ∗(sj |si, a)(η∗(P ∗(·|si, a),V π

r ) − V π
r (sj ))+√∑

s̃∈S P ∗(s̃|si, a)(η∗(P ∗(·|si, a),V π
r ) − V π

r (s̃))2+
,

where C(ρ) = √
1 + ρ. And σ 2(P ∗(·|s, a),V π

r ) = (bπ
s,a)

��s,ab
π
s,a where

�s,a(i, j) = −P ∗(si |s, a)P ∗(sj |s, a) + P ∗(si |s, a)1{i = j},

bπ
s,a(i) = −C(ρ)

(η∗(P ∗(·|s, a),V π
r ) − V π

r (si))
2+

2
√∑

s′∈S P ∗(s′|s, a)(η∗(P ∗(·|s, a),V π
r ) − V π

r (s′))2+
,

and η∗ is the dual solution of T π
r V π

r .
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(c) If f (t) = t log t in Example 2.1 (KL balls), then the (i, j)th element of Mπ is

Mπ(i, j) = 1{i = j} − γ
∑
a

π(a|si)
P ∗(sj |si, a) exp(− V π

r (sj )

λ∗(P ∗(·|si ,a),V π
r )

)∑
s̃∈S P ∗(s̃|si, a) exp(− V π

r (s̃)

λ∗(P ∗(·|si ,a),V π
r )

)
.

And σ 2(P ∗(·|s, a),V π
r ) = (bπ

s,a)
��s,ab

π
s,a where

�s,a(i, j) = −P ∗(si |s, a)P ∗(sj |s, a) + P ∗(si |s, a)1{i = j},

bπ
s,a(i) = −

λ∗(P ∗(·|s, a),V π
r ) exp(− V π

r (si )

λ∗(P ∗(·|s,a),V π
r )

)∑
s′∈S P ∗(s′|s, a) exp(− V π

r (s′)
λ∗(P (·|s,a),V π

r (s′)) )
,

and λ∗ is the dual solution of T π
r V π

r .

Notably, the asymptotic variance is determined by robust value function V π
r (μ), P ∗ and

optimal dual variables λ∗, η∗ of robust optimization problem T π
r V π

r . To estimate the asymp-
totic variance, we can substitute these variables with consistent estimators V̂ π

r , P̂ , and λ̂∗,
η̂∗, where λ̂∗ and η̂∗ are dual solutions of problem T̂ π

r V̂ π
r . Thus, an asymptotic confidence

interval for a given policy π can be given by Slutsky’s lemma.
We now give the asymptotic results of maxπ V̂ π

r (μ). Prior to that, we define the robust
Q-value function Qπ

r (s, a) as

Qπ
r (s, a) = R(s, a) + γ inf

P∈Ps,a(ρ)
P �V π

r .

Under some mild assumptions, we show that the asymptotic normality of maxπ V̂ π
r (μ) still

holds in the following corollary.

COROLLARY 4.1. Assuming mins,a1 �=a2 |Q∗
r (s, a1) − Q∗

r (s, a2)| > 0, we have
√

n
(
max

π
V̂ π

r (μ) − max
π

V π
r (μ)

)
d→ N

(
0,μ�(

Mπ∗)−1
�π∗(

Mπ∗)−�
μ

)
,

where π∗ ∈ argmaxπ V π
r (μ), where Mπ∗

and �π∗
are defined in Theorem 4.1.

Here we give a high-level idea on why Corollary 4.1 holds. When sample size n is
large, we can prove that Q̂∗

r (s, a) approximates Q∗
r (s, a) for each (s, a) pair. In addition,

as the (s, a)-rectangular assumption holds, we also know that π̂∗(s) = argmaxa Q̂∗
r (s, a)

and π∗(s) = argmaxa Q∗
r (s, a) are both deterministic policies. Thus, by Assumption

mins,a1 �=a2 |Q∗
r (s, a1) − Q∗

r (s, a2)| > 0, we conclude that π̂∗ = π∗ when sample size n is
large. Thus, we can safely consider maxπ V̂ π

r (μ) = V̂ π∗
r (μ) in an asymptotic regime and

obtain Corollary 4.1 by applying π = π∗ in Theorems 4.1(a), 4.1(b) and 4.1(c).

4.2. Results with the s-rectangular assumption. We extend the asymptotic results from
the (s, a)-rectangular assumption to the s-rectangular assumption. Unfortunately, when the
L1 uncertainty set is applied, the asymptotic behavior is not guaranteed by the fact that the
Bellman operator Tr is neither differentiable nor affine w.r.t. V . Instead, the asymptotic nor-
mality still holds when either the χ2 uncertainty set or the KL uncertainty set is applied,
which is presented as follows.

THEOREM 4.2. Without loss of generality, we assume V π
r (s1) < · · · < V π

r (s|S|). Under
the s-rectangular assumption, we have that for any fixed policy π ∈ �,

√
n
(
V̂ π

r (μ) − V π
r (μ)

) d→ N
(
0,μ�(

Mπ )−1
�π (

Mπ )−�
μ

)
,
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where �π is the asymptotic variance of empirical robust Bellman error, and Mπ is the deriva-
tive of the operator I − T π

r at the point V π
r .

Specifically, �π = diag{σ 2
1 (π), . . . , σ 2|S|(π)} where σ 2

s (π) = γ 2σ 2(π,P ∗(·|s, ·),V π
r ).

And:

(a) If f (t) = (t − 1)2 in Example 2.1 (χ2 balls), then the (i, j)th element of Mπ is

Mπ(i, j) = 1{i = j}

− γ
√|A|C(ρ)

∑
a π(a|si)P ∗(sj |si, a)(η∗

a(P
∗(·|si, ·),V π

r ) − π(a|si)V π
r (sj ))+√∑

s̃,a P ∗(s̃|si, a)(η∗
a(P

∗(·|si, ·),V π
r ) − π(a|si)V π

r (s̃))2+
,

where C(ρ) = √
1 + ρ. And σ 2(π,P ∗(·|s, ·),V π

r ) = (bπ
s )��sb

π
s where for two pairs (si, ak)

and (sj , al):

�s

(
(si, ak), (sj , al)

) = (−P ∗(si |s, ak)P (sj |s, al) + P(si |s, ak)1{si = sj })1{ak = al},

bπ
s (si, ak) = −√|A|C(ρ)(η∗

ak
(P ∗(·|s, ·),V π

r ) − π(ak|s)V π
r (si))

2+
2
√∑

s′∈S,a′∈A P(s′|s, a′)(η∗
a′(P ∗(·|s, ·),V π

r ) − π(a′|s)V π
r (s′))2+

,

and η∗ is the dual solution of T π
r V π

r .
(b) If f (t) = t log t in Example 2.1 (KL balls), then the (i, j)th element of Mπ is

Mπ(i, j) = 1{i = j} − γ
∑
a

π(a|si)P ∗(sj |si, a) exp(− π(a|si )V π
r (sj )

λ∗(P ∗(·|si ,·),V π
r )

)∑
s̃∈S P ∗(s̃|si, a) exp(− π(a|si )V π

r (s̃)

λ∗(P ∗(·|si ,·),V π
r )

)
,

and σ 2(P ∗(·|s, ·),V π
r ) = (bπ

s )��sb
π
s where for two pairs (si, ak) and (sj , al):

�s

(
(si, ak), (sj , al)

) = (−P ∗(si |s, ak) · P(sj |s, al) + P(si |s, ak)1{si = sj })1{ak = al},

bs(si, ak) = −
λ∗(P ∗(·|s, ·),V π

r ) exp(− π(ak |s)V π
r (si )

λ∗(P ∗(·|s,·),V π
r )

)∑
s′∈S P(s′|ak, s) exp(− π(ak |s)V π

r (s′)
λ∗(P (·|s,·),V π

r )
)

,

and λ∗ is the dual solution of T π
r V π

r .

However, different from the (s, a)-rectangular setting, the optimal policies π̂∗ ∈
argmaxπ V̂ π

r and π∗ ∈ argmaxπ V π
r could be stochastic. Thus, we can only obtain π̂∗ a.s.→ π∗

in the s-rectangular setting (Theorem 4.3) and can not just set π = π∗ in Theorems 4.2(a)
and 4.2(b). Fortunately, we could still obtain a result of asymptotic normality of V̂ ∗

r in Corol-
lary 4.2, and the details can be found in Section 11 of the Supplementary Material [81].

THEOREM 4.3. Assuming π∗ ∈ argmaxπ V π
r is unique, we have that V̂ ∗

r

a.s.→ V ∗
r and

π̂∗ a.s.→ π∗.

COROLLARY 4.2. Assuming π∗ is unique, we have

√
n
(
max

π
V̂ π

r (μ) − max
π

V π
r (μ)

)
d→ N

(
0,μ�(

Mπ∗)−1
�π∗(

Mπ∗)−�
μ

)
,

where π∗ ∈ argmaxπ V π
r (μ), where Mπ∗

and �π∗
are defined in Theorem 4.2.
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FIG. 1. Convergence results of RVI under (s, a)-rectangular settings. (a): Results of all cases with n = 1000.
(b): Results when f = χ2 and ρ = 0.1.

4.3. Interpretation of asymptotic variance. The asymptotic variances of robust MDPs
under different assumptions all share a similar expression μ�(Mπ)−1�π(Mπ)−�μ, where
Mπ and �π are determined by the choice of uncertainty sets. The term �π is actually the
asymptotic variance of

√
n(T̂ π

r V π
r − T π

r V π
r ), which reduces to the variance of empirical

Bellman noise [45] in the setting of nonrobust MDPs. Recall that Mπ is the derivative of
operator I −T π

r at the point V π
r , which reduces to the matrix I −γP π in the nonrobust MDPs

setting. In other words, the asymptotic variances in robust MDPs share a similar structure with
the asymptotic variance in nonrobust MDPs [33, 45]. Besides, the asymptotic results imply
the empirical robust value function converges to the true robust value function with a typical
rate

√
n. Thus, a direct application of our asymptotic results is to construct a confidence

interval for the robust value function, as long as we have a good estimation of asymptotic
variances. Indeed, the asymptotic variances have explicit forms in our results (Theorems 4.1
and 4.2). Thus, to construct a confidence interval from the dataset, we can plug empirical
estimator P̂ and robust value function V̂ ∗

r into the asymptotic variance. We leave the details
in the experiments section.

5. Experiments. To evaluate the statistical performance of robust MDPs, we conduct
several numerical experiments in this section. We choose randomly generated MDPs as ex-
periment environments. Under the (s, a)-rectangular setting, we run the classic algorithm Ro-
bust Value Iteration (RVI) [32] on random MDPs to show that we can obtain a near-optimal
value function V̂ ∗

r and policy π̂ ∈ argmax V̂ π
r efficiently. Under the s-rectangular setting, we

run the Bisection algorithm, which was proposed by Ho, Petrik and Wiesemann [30]. The de-
tails of environments and algorithms are given in Section 12 of the Supplementary Material
[81].

5.1. Convergence guarantees. We first investigate the convergence performance of RVI
on a random MDP, where |S| = 20, |A| = 10, γ = 0.9. We leave details of the genera-
tion mechanism in Section 12 of the Supplementary Material [81]. For every choice of
f ∈ {L1, χ

2,KL}, ρ ∈ {0.1,0.5,1.0} and n ∈ {10,50,100,500,1000}, we run RVI indepen-
dently for 1000 times and draw average performances in Figure 1. In Figure 1, the x-axis
stands for the number of iteration steps and the y-axis stands for estimation error ‖Vt −V ∗

r ‖∞,
where the Vt come from RVI.

In Figure 1(a), we show the convergence results with all the cases. It can be observed that
the convergence rate is linear at the first stage and then becomes stable at a certain error level
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for all the settings. Indeed, Vt converges to V̂ ∗
r at linear rate and there exist statistical errors

between V̂ ∗
r and V ∗

r . Thus, the first stage in Figure 1(a) is due to linear convergence rate of
‖Vt − V̂ ∗

r ‖∞ and the second stage is due to statistical error ‖V̂ ∗
r − V ∗

r ‖∞. In Figure 1(b),
we set f = χ2, ρ = 0.1 and n ∈ {10,50,100,500,1000}. It is worth noting that the final
performance is correlated with the choice of n. In fact, the statistical error ‖P̂s,a − Ps,a‖1 is
correlated with n. When n is small, it is no wonder that the final performance is bad.

In addition, we run the Bisection algorithm on another random MDP with |S| = |A| = 5,
γ = 0.9 under the s-rectangular setting. We choose a smaller MDP than the (s, a)-rectangular
case by the fact that s-rectangular problems are more difficult to deal with. For every choice
of f ∈ {χ2,KL}, ρ ∈ {0.05,0.1,0.5} and n ∈ {10,50,100,500,1000}, we also run the Bisec-
tion algorithm independently for 1000 times and draw average performances in Figure 2. In
Figure 2(a), we show the results with all the cases. In comparison with the (s, a)-rectangular
setting, the final statistical errors vary less among the different choices of f . In Figure 2(b),
we choose f = χ2, ρ = 0.1 and n ∈ {10,50,100,500,1000}. From Figure 2, it is easily
observed that the convergence performances are similar with the s-rectangular settings.

5.2. Asymptotics. Next, we follow the theoretical results from Section 4 to make infer-
ence on V̂T (μ) empirically under the same settings as in Section 5.1. First of all, based
on RVI under the (s, a)-rectangular setting, we estimate �̂ and M̂πT with V̂T and obtain

σ̂ =
√

μ�(M̂πT )−1�̂(M̂πT )−�μ, where � and Mπ are defined in Section 4. Then we are
able to construct a confidence interval CIn(p) = [V̂T − zp

σ̂√
n
, V̂T + zp

σ̂√
n
], where zp is the

p-quantile of the standard normal distribution N (0,1). By the fact that M̂π and �̂ are con-
sistent (refer to the detailed proofs in Section 11 of the Supplementary Material [81]), we can
safely say limn→∞P(V ∗

r (μ) ∈ CIn(p)) = 1 − 2(1 − p). To evaluate our theory, we test the
empirical coverage rate in Table 3 and Figure 3, where we set p = 0.975 and zp = 1.96. We
observe that the empirical coverage rate approximates the desired true coverage rate and the
length of confidence interval decreases as the number of samples increases in all the cases.
Interestingly, it seems that the length of confidence interval increases as ρ increases.

Similarly, we also conduct experiments under the s-rectangular setting, where we choose
f ∈ {χ2,KL}, ρ ∈ {0.05,0.1,0.5} and n ∈ {10,50,100,500,1000}, and run the Bisection
algorithm on the random MDP (|S| = |A| = 5) for 1000 times. We also conclude the coverage
under the s-rectangular setting in Table 4 and Figure 4, where the results of the empirical
coverage meet our expectation.

FIG. 2. Convergence results of Bisection Algorithm under s-rectangular settings. (a): Results of all cases with
n = 1000. (b): Results when f = χ2 and ρ = 0.1.
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FIG. 3. Coverage rates (CR) and average CI lengths (CIL) under (s, a)-rectangular settings.

FIG. 4. Coverage rates (CR) and average CI lengths (CIL) under s-rectangular settings.
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TABLE 3
Results of coverage rate (CR) and confidence interval length (CIL) under (s, a)-rectangular settings: The standard errors of CR p̂ are computed via

√
p̂(1 − p̂)/1000 × 100% and

reported inside the parentheses

n = 10 n = 100 n = 1000

Items ρ = 0.1 ρ = 0.5 ρ = 1.0 ρ = 0.1 ρ = 0.5 ρ = 1.0 ρ = 0.1 ρ = 0.5 ρ = 1.0

CR(%) L1 84.0 (1.159) 87.0 (1.063) 83.2 (1.182) 94.5 (0.721) 93.3 (0.791) 93.0 (0.801) 96.3 (0.597) 95.0 (0.689) 94.5 (0.721)
χ2 64.3 (1.515) 54.9 (1.574) 50.1 (1.581) 93.1 (0.801) 93.4 (0.785) 92.1 (0.853) 96.1 (0.612) 95.2 (0.676) 95.1 (0.683)
KL 44.8 (1.573) 13.6 (1.084) 5.8 (0.739) 92.5 (0.833) 89.5 (0.969) 85.2 (1.123) 96.1 (0.612) 95.2 (0.676) 95.1 (0.683)

CIL (10−2) L1 3.170 (0.410) 5.187 (1.590) 7.767 (3.034) 1.129 (0.058) 1.885 (0.188) 2.901 (0.327) 0.365 (0.006) 0.604 (0.019) 0.929 (0.033)
χ2 3.722 (0.469) 5.131 (0.851) 6.411 (1.505) 1.409 (0.075) 2.135 (0.163) 2.836 (0.291) 0.450 (0.008) 0.705 (0.019) 0.979 (0.049)
KL 3.979 (0.566) 5.588 (1.335) 6.496 (2.162) 1.628 (0.102) 2.893 (0.291) 4.025 (0.418) 0.526 (0.011) 0.999 (0.321) 1.351 (0.078)
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TABLE 4
Results of coverage rate (CR) and confidence interval length (CIL) under s-rectangular settings: The standard errors of CR p̂ are computed via

√
p̂(1 − p̂)/1000 × 100% and

reported inside the parentheses

n = 10 n = 100 n = 1000

Items ρ = 0.05 ρ = 0.1 ρ = 0.5 ρ = 0.05 ρ = 0.1 ρ = 0.5 ρ = 0.05 ρ = 0.1 ρ = 0.5

CR(%) χ2 91.3 (0.891) 90.2 (0.940) 68.2 (1.473) 94.5 (0.721) 94.5 (0.721) 94.9 (0.696) 94.1 (0.745) 94.5 (0.721) 94.7 (0.708)
KL 87.5 (1.046) 86.6 (1.077) 41.9 (1.560) 94.5 (0.721) 94.6 (0.715) 93.8 (0.763) 94.8 (0.702) 94.5 (0.721) 93.9 (0.757)

CIL (10−2) χ2 4.704 (0.931) 5.193 (1.196) 7.639 (21.657) 1.522 (0.081) 1.703 (0.098) 2.206 (0.336) 0.481 (0.008) 0.536 (0.010) 0.693 (0.031)
KL 4.650 (1.086) 4.991 (1.545) 3.615 (1.720) 1.533 (0.093) 1.715 (0.140) 3.186 (0.612) 0.484 (0.009) 0.542 (0.014) 1.080 (0.046)
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6. Discussion. In this paper, we have studied robust MDPs, which are the foundation
of robust RL problems. Our primary concern focuses on the statistical performances of the
optimal robust policy and value function obtained from empirical estimation, including finite-
sample results and asymptotics based on the most commonly used uncertainty sets: L1, χ2,
and KL balls. In particular, we have shown that with a polynomial number of samples in the
dataset, the performance gap can be controlled well under both the (s, a) and s-rectangular
assumptions. Furthermore, we have also shown that the empirical robust optimal value func-
tion converges with rate OP (1/

√
n) and converges to a normal distribution, from which we

are able to make inferences from the estimators.
However, some issues still remain open. Firstly, in this paper, the size of the uncertainty set

is chosen to be controlled by a positive constant parameter ρ > 0. The finite-sample results in
Section 3 tell us that a proper choice of ρ can reduce the sample complexity. There are some
prior works [12, 59], mentioning that the size of the uncertainty set could also be controlled
by a shrinking parameter ρn (such as ρ/

√
n), whose statistical properties are still unclear.

Thus, understanding the adaptive choice of ρ is a vital topic in future research.
Secondly, in terms of finite-sample results, it is worth noting that there still exists a gap

between upper bounds and lower bounds regarding factors |S|, |A| and 1/(1−γ ). Improving
the dependence of these parameters is also a significant research direction.

Finally, in the context of asymptotics, we have proved that V̂ ∗
r (μ) is asymptotically normal

with rate
√

n in both the (s, a) and s-rectangular assumptions. Under the (s, a)-rectangular
assumption, the empirical optimal robust policy π̂∗ ∈ argmaxπ V̂ π

r (μ) is exactly the same
as π∗ ∈ argmaxπ V π

r (μ) when the sample size n is large enough. However, under the s-
rectangular assumption, we only know that π̂∗ converges to π∗ almost surely without a spe-
cific convergence rate. According to Van der Vaart [71], we argue that if we could have a
more precise estimate of β in the following inequality

E sup
d(π1,π2)<δ

√
n
∣∣V̂ π1

r (μ) − V π1
r (μ) − V̂ π2

r (μ) + V π2
r (μ)

∣∣ ≤ Cδβ,

the convergence rate of π̂∗ then could be determined, and making inference for π̂∗ becomes
possible. We would leave it to future work.
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